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Abstract—Temperature distributions are determined analytically for fully developed laminar heat
transfer in channels with aspect ratios from 1 to o0. The channel walls are uniformly heated, but the
heat flux on the short sides is an arbitrary fraction between 0 and 1 of the heat flux on the broad sides.
For all cases, the wall temperatures are compared on the basis that the total heat transferred per unit
channel length is maintained at a fixed value. The poor convection due to the low velocities in the
corners and along the narrow walls always caused the peak temperatures to occur at the corners. The
lowest peak temperatures were found when all the heating took place at only the broad walls rather
than when heating was partly distributed to the short sides. This results from the fact that, when four
sides are heated, more energy is being supplied to the low velocity corner regions. For heating at only
the broad walls, the corner temperature decreases rapidly as the aspect ratio is increased to about 10
and insignificantly thereafter. In the limit of infinite aspect ratio, the wall temperature distribution
does not approach a constant as is the case for infinite parallel plates.

NOMENCLATURE 0., complementary solution given by the

Aq, By, Fourier coefficients defined in equa- sum of 6, and 6: from equations (9)
tions (9) and (10); and (10);

a, b, half lengths of short and broad sides, 0p. particular solution equivalent to
respectively; 8, -+ 6* as given by equation (6);

C*, coefficient defined after equation (6); H fluid viscosity;

Cps specific heat of the fluid; P, fluid density.

G, quantity defined after equation (1b);

k, thermal conductivity of the fluid; Subscripts

D, static pressure; B, refers to broad side;

0. heat addition per unit channel length; b, bulk mean value;

q, heat addition per unit wall area; S, refers to short side;

T, temperature; w, value at wall.

u, fluid velocity;

i, mean fluid velocity; INTRODUCTION

X, dimensionless co-ordinate, x/a; RECTANGULAR coolant channels are often em-

X, co-ordinate measured along short ployed in heat-exchange devices, particularly in
side from channel center; nuclear reactor plate-type fuel assemblies where

Y, dimensionless co-ordinate, y/b; wide, parallel fuel bearing plates are supported

¥, co-ordinate measured along long side by unfueled side plates. In such assemblies,
from channel center; most of the total heating is produced in the

z, co-ordinate measured along the axial broad, fueled plates with the remainder (usually
direction; less than 10 per cent) resulting from gamma heat-

B, heat flux ratio, ¢gs/qz; ing in the support walls. For example, in [1]

Y, aspect ratio, b/a; 3 per cent of the total heating is generated in the

0, dimensionless temperature, 4k7/Q; support walls. Cooling is accomplished by

733



734

passing high velocity fluid through the channels.
A factor of importance for proper operation of
the reactor is maintaining a satisfactory tempera-
ture distribution in the cooling channel walls.

Several papers have treated laminar fully
developed heat transfer in rectangular channels
with specified heat fluxes around the periphery.
In [2] the problem is examined where both
uniform and non-uniform heating take place on
a large fraction of only the broad walls. As part
of the solution in [2], the case of uniform heating
over the entire broad walls (with the side walls
unheated) was solved numerically for channels
having aspect ratios of 10 and 20. In [3] varia-
tional methods were utilized to obtain results
for aspect ratios of 1 and 10 with uniform heat
flux on all four sides, and for an aspect ratio of
10 with uniform heating on the broad sides only.
An analytical solution was obtained in [4] for
uniform heating on four sides, and results
evaluated for aspect ratios of 1, 2, and 4.

1t is the purpose of this note to provide the
general solution where heating occurs on all four
walls for the conditions that the uniform heat
flux on the short walls is any fraction between
0 and 1 of the flux on the broad walls. The total
heat input per unit channel length is maintained
constant, and aspect ratios from | to ov are
considered.

ANALYSIS
The rectangular channel and its co-ordinate
system are shown in Fig. 1. Only the fully
developed velocity and temperature regions are
considered, and the fluid is assumed to have
constant properties.

UNIFORMLY HEATED
BROAD WALLS. g

T ¥z
S S ~ AN
UNIFORMLY HEATED
uix,y) SIDE WALLS, 615 = ﬁqﬁ

WHERE 0sBzxl
Fic. 1. Co-ordinate system for rectangular channel
with different uniform heating on each pair of
opposite walls, O = dags | 4bgp.
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Velocity distribution. For steady laminar flow.
the velocity distribution is given in [5] as

4a2dp\ 1
W}Ld”‘i_(
no 1,3,5,...

y%@w@@F@m
cosh (nmb[2a)
Equation (la) was integrated over the cross
section, and the double integral divided by the
cross-sectional area to give the mean velocity i
which was used to non-dimensionalize . In
addition the infinite cosine series arising from
the 1 in the bracket in equation (1a) is equivalent
to a parabola so that the expression can be
simplified to the form [6]'
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Energy equation. The energy equation for the
fluid temperature with viscous dissipation
neglected, is

oT &7 ;2T 23T
“W@Tqm?@ﬁwﬁ @

Under the assumption of constant heat addition
per unit channel length, Q, a heat balance on the
channel length between the entrance (z == 0) and
any axial location z shows that the bulk tempera-
ture, Tp(z), rises linearly along the axial direction:

Q-
-0+ 4ab;§c 7]
By definition, the fully developed condition
states that [T(x, y) -~ T3] does not depend on
the axial position z. Hence,
oT Ty [0) T
8z oz dabpegi’ 0z
Equation (2) then simplifies to,
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From symmetry, only the first quadrant need be
considered, and the boundary conditions are

— . . 1
0§X§a, @(xso)*o
o 1% qs
o ) e S
b
24 dk (b +a] kK }(4)
o r B
Oysb: 20,)=0
Q (13
(”y) kb +afl T k

J
The energy equation (3) is to be solved subject
to the boundary conditions (4) using the velocity
distribution (1b).

Superposition of solutions. Equation (3) is
written in terms of the dimensionless temperature
6 = 4kT/Q:

%0 o2
= o T gy

) L u
This is a non-homogeneous second order partial
differential equation, and the difficulty of solu-
tion is caused by the complexity of the u/i term.
By superposition, the solution is expressed as
the sum of a particular solution 8, and a comple-
mentary solution 0;; i.e. § = 0, + 8, where 8,

satisfies the Poisson equation:
1 u

Ve (5a)
and 6, satisfies the Laplace equation:
V26, = (5b)

A particular solution can be adapted from the
one given in [4] and is written in the dimension-
less form:

X4 2Y2
0p=o”+0*=G{ 7 8

96 16

[cosh ('%TZ Y)
n=1,3,5

-+ (HT) Y sinh (T Y)] cos (’E’zi()}
+ O (X - 2Ty ©
where C* = 1/2]y + 8]

(— )m+nr2
n5 cosh (nmy/2)

The complementary solution is divided into
two parts 8, = 6, -+ 02 having the boundary
conditions

0 o0
01(0 y) = l(x,O):5)71(ac,1)):o
1 2C* 00 @
(l’y) b+ aB 7;“9?"(‘1,}))
082 00s 08s
’a;(oay) =@y = "a;(X, 0) =0
1 2C*h o8 ®)
(X b) b/ﬂ + a + ?— - é} (x’ b)

In addition to satisfying these boundary con-
ditions, it is a restriction of the Neumann
problem for Laplace’s equation that the line
integral of the normal derivatives around the
boundary be zero, a condition that was used to
evaluate C* from either equations (7) or (8). It
is the necessity of satisfying these line integral
conditions that required the 6* function to be
introduced.

The solutions for 6; and 6; were found by
using product solutions in conjunction with
Fourier series expansions of the boundary
conditions. The final solutions for 6; and 65 in
dimensionless forms are:

0

« , cosh (a7 X /y)

01:41 o smh(n /) cos (nmY)
n-1,2,3,...
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The analytical forms of 8; and 6. automatically
satisfy the zero derivative conditions in equa-
tions (7) and (8). The Fourier coefficients 4, and
B, were evaluated to satisfy the finite derivative
conditions @6:1(a, y)/¢x and 0a(x, b)/¢y, re-
spectively. It is significant to note that the
constant terms,

2C#*) 1 2C*b
(‘b +af  a and (.b/B +a F )’

in these boundary conditions do not make a
contribution to the A, and B,, as they are
multiplied by cos(#nY) and cos (nwX), re-
spectively, and are integrated from O to 1 result-
ing in zero values. Hence, the 6, and 62 solutions
depend only on the 6, part of the particular
solution, and along with 6, are independent of
B. As a result, it is the 8 factor in the 8* function
that alone accounts for the unequal heat fluxes
on adjacent sides.
Bulk temperature. The solution

az

60, + 6% 10 | by

is substituted into the definition for the bulk

temperature:
1 [«
0 )
abj J dx dy

The integrations are carried out, and after
considerable algebraic manipulation the bulk
temperature is given by

ty — (I
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The final solution is then given as

6 — 9() = 677 — f* = 91 - Hg e ()()

in which y and B are the only parameters.

LIMITING CASE OF INFINITE ASPECT RATIO

The solution was examined for the case where
y-> oo resulting in the following limiting
analytical expression for the wall temperature
distribution:

s}

96Y2 - 32y /N 1
o (LS
n_1,3,5,...
B, B
+2Y ~6 (13)
64 <O 1
A(X, 1) — 6 _§+ 5 5 (14)
n-1,3,5, ...

where (13) and (14) agree at the corner X = |,

Y =1, and
%; L3t 1-03693
, n5ﬁ32( )

n--1,3,5,...

in which the last number is the Riemann zeta
function of argument 5. As shown on Fig. 2
this limit yielded results consistent with the
general solution evaluated at large .
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DISCUSSION

Designers of nuclear reactor cooling channels
are interested in the temperatures achieved by
the walls for a known heat input and a given
coolant. The wall temperatures are given here
relative to the bulk temperature, and the differ-
ence (Tw — Tp) is non-dimensionalized by Q/4k.
The dimensionless distributions (T — 73)/
(Q/4k) were evaluated from the analytical
solution and are presented in Figs. 2 to 4. The
magnitudes in these figures can be thought of as
directly comparable in terms of temperatures
if the fluid conductivity & and the total heat
input per unit channel length are assumed fixed.

The validity of the analytical solution was
verified by comparison with results for a few
cases obtained by different methods in [2] and

0-64r

ASPECT RATIO,

0-56 Ysbla

048

737

{3] and by a similar analytical technique in [4]
for B = 1. At some places along the wall, the
value of (T — T3)/Q/4k) is negative, which
means that 7j is larger than 7. This may seem
to contradict the fact that heat is flowing from
the wall to the fluid. However, it must be re-
called that T is a local value along the wall,
while T} is an average value over the entire cross
section.

Because of the complexity of the equations,
the influence of the aspect ratio y and the heating
ratio parameter B are not readily explained
directly from the analytical solution. For this
reason, an attempt is made to present physically
plausible explanations for some of the trends in
the graphical results. The physical significance
of the B parameter should be kept in mind when
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Fic. 2. Walltemperatures of rectangular channels for cases of uniform heat flux on two walls and
uniform heat flux on four walls.
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interpreting the figures. When 38 = 0, all the Q
is uniformly transferred from the broad walls
only. For a fixed aspect ratio, as 3 is raised, an
increasing portion of the Q is transferred to the
fluid from the short sides, so that when 8 - I,
all portions of the periphery have the same local
heat flux.

Figure 2 provides results for various aspect
ratios, for the important cases where cither only
two walls or all four walls are uniformly heated.
Consider first the solid curves, where all of the
Q is being dissipated from only the broad walls.
The curve for y == 10 agreed very well with the
results obtained by a variational method in
[3], while both the y == 10 and 20 curves matched
those of [2] which were evaluated by a finite
difference technique. As an aid to understanding
the curves it is convenient to visualize a set of
channels all having the same width 25, the same
total Q, and with the aspect ratio being increased
by diminishing the spacing 2a. The peak tempera-
tures for all ¢’s occur in the corners where the
low coolant velocities provide for a poorer heat
removal than other regions at higher velocities.
The increased corner temperatures cause some
of the heating in this region to flow into the
higher velocity portion of the cross section. For
a square duct, y = 1, the heat flow paths from
the two heated walls toward the region of high
velocity fluid are approximately equal for all
positions on the heated side. and hence, the
temperature along these walls is almost uniform.
As vy is increased (by decreasing the spacing, 2a)
the heated wall temperatures decrease because,
for narrower ducts, the paths for heat flowing
to the region of higher velocities are shortened.
These paths are roughly perpendicular to the
broad walls except for heat flowing from
the corner regions. When v is large, some of the
energy from the corner region must be conducted
through a longer path within the fluid in a
direction parallel to the broad sides to reach a
higher velocity region. Although the region of
low velocity fluid occupies proportionately less
of the cross-sectional area as y increases, the
width of the heat conduction path parallel to
the heated side is also decreased as the duct
becomes more narrow. As a result, when
y -+ o, the temperature distribution along the
heated wall goes to a limit with a maximum in
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the corner [equations (13) and (14)} rather than
to a uniform temperature, as is the case for u
duct of infinite parallel plates without bounding
side walls. There must always be a spanwisc
temperature gradient to transport some of the
imposed heating away from the low velocity
region of the corners and side walls and distri-
bute it to the more rapidly moving fluid.

Now consider the set of dotted curves in
Fig. 2 for uniform heating all around the duct
periphery. The corner regions now receive heat
from two sides and the interesting consequence
is that the peak temperature remains essentially
constant as y is increased. The temperature
gradients along the broad sides again increase
with y to remove the heat from the corner and
side wall regions. Cheng’s results for y == 1, 2,
and 4 werec compared to those of this analysis
and the agreement was very good for v - 2 and
4 (although the y — 4 results are not plotted in
Fig. 2). Cheng’s values for y == 1 appear to be
in error.

In Fig. 3 is shown the effect of changing j
between 0 and 1 for two extremes in aspect
ratio,y == I and 20. As 8 is increased, the shifting
of heat to the narrow wall tends to increase its
temperature, while the temperature of the broad
wall, tends to decrease. For a square duct,
y == 1 (dotted lines), the corner temperatures
remain fixed because the heating received by the
corner region remains constant. The heat re-
moved from one wall that forms the corner is
added through the other. For y = 20 (solid
lines), as B is raised from O to 1, only a small
amount of heat from all along the broad walls
needs to be shifted to the short walls to provide
the same uniform heat flux at the short wall.
Hence, more energy is concentrated in the region
of poor convection and produces an increase of
both the spanwise temperature gradient and the
corner temperature as S is increased, a result
which was found to hold true for all rectangular
ducts (y = 1). This provides the important
conclusion that it is better to transfer all the
heat through the broad walls of rectangular
channels than to distribute it around the entire
periphery (under the restrictions that the walls
are non-conducting and that the heating extends
all the way into the corners). A similar con-
clusion was also indicated in [3] for an aspect
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ratio of 10 by comparing the two cases given
there for 5 = 1 and 0.

In Fig. 4 are shown the peak temperatures as
a function of the aspect ratio for various § values.
The largest reduction in the corner temperatures
is achieved when all the heat is transferred
through the broad walls only (8 == 0) and when
the aspect ratio is increased to about 10. Beyond
y ~ 10, only a small reduction occurs, so that
for rectangular cooling channels in nuclear
reactors where 8 &~ 0-03, the optimum aspect
ratio appears to be about 10 to 20. If the side
wall heating is increased (8 > 0), the corner
temperatures do not drop off as rapidly with
larger y as for the case where 5 == 0. When the
heat flux is very nearly uniform over all walls
(075 < B << 1), the peak temperatures are
almost constant for all aspect ratios. Hence, it is
concluded that for many nuclear reactors that
utilize rectangular channels, it would be a
disadvantage to load the narrow side walls even
if it were possible. The advantage gained by the
increased heat-transfer area would be offset by
the additional heating imposed near the corner
resulting in higher corner temperatures and
higher maximum to minimum wall temperature
differences.
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Résumé—On détermine analytiquement les distributions de température pour un transport de chaleur
laminaire entiérement développé dans des canaux avec des allongements allant de 1 a 'infini. Les
parois des canaux sont chauffées uniformément, mais le flux de chaleur sur les faces étroites est une
fonction arbitraire comprise entre 0 et 1 du flux de chaleur sur les faces larges. Pour tous les cas,
les températures de paroi sont comparées sur la base que la chaleur totale transmise par unité de
longueur du canal est maintenue a une valeur fixe. La faible convection due aux vitesses faibles dan
les coins et le long des parois étroites faisait toujours que les températures maximales se présentaient
aux coins. On a trouvé les températures maximales les plus basses lorsque tout I’échauffement se
produisait seulement sur les parois larges plutdt que lorsqu’il était distribué en partie sur les faces
étroites. Ceci résulte du fait que, lorsque les quatre cotés sont chauffés, plus d’énergie est fournie aux
régions des coins a faible vitesse. Pour ’échauffement seulement aux parois larges, la température
des coins diminue rapidement lorsque I'allongement augmente jusqu'a 10 environ et d’une fagon
insignifiante aprés. A la limite d’un allongement infini, la distribution de température pariétale ne tend
pas vers une constante, comme c’est le cas pour des plagques planes infinies.

Zusammenfassung—Fiir voll ausgebildeten laminaren Wirmeiibergang in Kanilen mit Lingenver-
hiltnissen von 1 bis « werden Temperaturverteilungen analytisch bestimmt. Die Kanalwénde sind
gleichmissig beheizt, doch ist der Wirmestrom von den schmalen Seitenflichen ein willkiirlicher
Bruchteil zwischen 0 und 1 des Wirmestroms von den breiten Deck- und Bodenflachen. In allen
Fillen werden die Wandtemperaturen so verglichen, dass die, pro Lingeneinheit des Kanals uber-
tragene Wirmemenge als konstant angenommen wird. Die wegen der kleinen Geschwindigkeiten in
den Ecken und entlang der Schmalseiten geringe Konvektion ldsst stets die Temperaturspitzen an den
Ecken entstehen. Die kleinsten Temperaturspitzen ergeben sich, wenn die Beheizung nur von den
breiten Winden her erfolgt und nicht noch teilweise auf die Schmalseiten verteilt ist. Das beruht
darauf, dass bei vier beheizten Seiten, den Eckbereichen mit kleiner Geschwindigkeit mehr Energie
zugefithrt wird. Bei Beheizung nur von den breiten Flichen her verkleinern sich die Ecktemperaturen
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bei Steigerung auf das Lidngenverhdltnis 10 sehr rasch, dariiber hinaus nur noch unbedeutend. Fiir
den Grenzwert unendlichen Lingenverhiltnisses niihert sich die Wandtemperaturverteilung keinem
konstanten Wert, im Gegensatz zu unendlichen parallelen Platten.

ABHOTAIMA~—~AHATUTHYECKH  OOPEAEIEHB  PACNpPeJeJeHUs  TeMTIepaTypHl  jJjd  [od-
HOCTBI0 PABBUTOTO JAMMHAPHOrO TemxoolMeHa B HaHamax ¢ oTHomeunex bja ot I o <.
CreHRH KAHANA HArPEBAJIHCH PABHOMEDHO, HO IIOTHOCTh TRILIOBOrO MOTOKA € V3RO cTopous
KAHAIA COCTABIANA HEKOTOPYIO MPOMIBOJNBHYIO TOMIO OT INIOTHOCTH TEILIOBOTO MOTOKA HA
mupoKoi cropode namersapmywea ot 0 10 1. [Laa Beex cayvaen TeMneparypH CTEHRN CPaBHi-
Baznch Ha Toll ocnome, 4ro oOIiee ROJIYECTBO TEILIA, UEPEHOCHMOrO HA OUTHMIY IITHUB
KaHaga, NONIePHUBAT0oCcE nocToAHHEM. [IooxXas RoHBeKUMA H3-32 MATHX cxopocTel B
YIJax M OO0 YIKHX CTEHOK BCEra BLIBHIBAIA MKW TeMOepaTypH B yraax. Meusnie nuku
TeMIEPATyPH ObLIH HallAeHs B CHy4ae, KOIEA HATPeBAHUE NPOHCXOMMIIO TOIBKO Ha [MHPOHHX
CTEHHAX 110 CPAaBHEHIO CO CHYYREM, KOT/IA YACTh TEIlIA TOIBOJHIACH YEpe3 Y3HHE CTeNRU.
970 BHTEHALT M3 TOre fIARTA, UTO IIPH HATPERE YeTHIPEX CTEIOK, MOZBOAHIOCH fonbile auepruy
R yraam, rjge cxopoctu Hepenuku. [Ipu Harpese TONBRO WIMPOKNX CTEHOK, TEMIEPATYPHL b
yraax ObICTPO YMEeHbUIASTCA, ¢ YBeuMenueM ornomenus bla npuvepso go 10, a nanee wamen-
AIeTCH HESHAUNTeIpHO., B npefede npn GecROHEWHOM OTHOmEHMH b/a pacnpejseneune Temue-
PATYPHI CTEHKH He JOCTUIAeT HOCTOAHHON BeINUMHEE, KAK B CIy4ae (eCROHeYHBIX HApAIIed-
BHHIX TITACTHH.
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